47 research outputs found

    Neuromorphic computing using non-volatile memory

    Get PDF
    Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networks (SNNs), deep neural networks (DNNs), and ‘Memcomputing’. In SNNs, NVM synaptic connections are updated by a local learning rule such as spike-timing-dependent-plasticity, a computational approach directly inspired by biology. For DNNs, NVM arrays can represent matrices of synaptic weights, implementing the matrix–vector multiplication needed for algorithms such as backpropagation in an analog yet massively-parallel fashion. This approach could provide significant improvements in power and speed compared to GPU-based DNN training, for applications of commercial significance. We then survey recent research in which different types of NVM devices – including phase change memory, conductive-bridging RAM, filamentary and non-filamentary RRAM, and other NVMs – have been proposed, either as a synapse or as a neuron, for use within a neuromorphic computing application. The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.11Yscopu

    Amazonia as a carbon source linked to deforestation and climate change

    Get PDF
    Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.</p

    Amazonia as a carbon source linked to deforestation and climate change

    Get PDF
    Amazonia hosts the Earth’s largest tropical forests and has been shown to be an important carbon sink over recent decades1,2,3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1,2,3. Here we investigate Amazonia’s carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5,6,7,8,9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10

    Primary Cutaneous Cryptococcosis Case Report

    Get PDF
    A criptococose constitui doença causada pelo fungo Cryptococcus neoformans, comumente encontrado em fezes de aves, como pombos. Este microorganismo pode causar doença em seres humanos, podendo acometer diversos órgãos, dentre eles a pele. Mais comumente ocasiona doença em indivíduos imunossuprimidos. O caso relatado é o de uma paciente do sexo feminino de 44 anos que fazia uso crónico de corticosteroide sem prescrição médica e apresentou lesão em face lateral de braço esquerdo, cujos exames laboratoriais confirmaram o diagnóstico de criptococose cutùnea primåria.Cryptococcosis is a disease caused by the fungus Cryptococcus neoformans, commonly found in bird excrement, like pigeons. This organism has the ability to cause disease in humans, which may affect several organs, including the skin. Most commonly it causes disease in individuals with some kind of suppression of the immune system. The case reported is of a female patient of 44-years- -old that had used corticosteroids for many months without prescription and presented a skin lesion on her left arm. Laboratory tests confirmed the diagnosis of primary cutaneous cryptococcosis

    Leishmania braziliensis exosomes activate human macrophages to produce proinflammatory mediators

    Get PDF
    Exosomes, organelles measuring 30-200nm, are secreted by various cell types. Leishmania exosomes consist of many proteins, including heat shock proteins, annexins, Glycoprotein 63, proteins exerting signaling activity and those containing mRNA and miRNA. Studies have demonstrated that Leishmania donovani exosomes downregulate IFN-Îł and inhibit the expression of microbicidal molecules, such as TNF and nitric oxide, thus creating a microenvironment favoring parasite proliferation. Despite lacking immunological memory, data in the literature suggest that, following initial stimulation, mononuclear phagocytes may become “trained” to respond more effectively to subsequent stimuli. Here we characterized the effects of macrophage sensitization using L. braziliensis exosomes prior to infection by the same pathogen. Human macrophages were stimulated with L. braziliensis exosomes and then infected with L. braziliensis. Higher levels of IL-1ÎČ and IL-6 were detected in cultures sensitized prior to infection compared to unstimulated infected cells. Moreover, stimulation with L. braziliensis exosomes induced macrophage production of IL-1ÎČ, IL-6, IL-10 and TNF. Inhibition of exosome secretion by L. braziliensis prior to macrophage infection reduced cytokine production and produced lower infection rates than untreated infected cells. Exosome stimulation also induced the consumption/regulation of NLRP3 inflammasome components in macrophages, while the blockade of NLRP3 resulted in lower levels of IL-6 and IL-1ÎČ. Our results suggest that L. braziliensis exosomes stimulate macrophages, leading to an exacerbated inflammatory state that may be NLRP3-dependent

    Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model

    Get PDF
    Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Dementia in Latin America : paving the way towards a regional action plan

    Get PDF
    Regional challenges faced by Latin American and Caribbean countries (LACs) to fight dementia, such as heterogeneity, diversity, political instabilities, and socioeconomic disparities, can be addressed more effectively grounded in a collaborative setting based on the open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking and translational research) and align them to current global strategies to translate regional knowledge into actions with transformative power. Then, by characterizing genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions and mapping these to the above challenges, we provide the basic mosaics of knowledge that will pave the way towards a KtAF. We describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF
    corecore